

A 3D Character Customization Tool using Unity

Game Engine

Parth Patel | 013705718

Dennis Dang | 012444874

Table of Contents

Table of Contents 2

Abstract 3

Introduction 4

Functional Design 6

System Design 10

Implementation 11
Facial Expressions using BlendShapes 12
Controlling Body Shapes by Shaders 13
Changing Clothes 14
Animating Character using Mecanim and Rotation 15

System Testing 16

Conclusion 20

References 21

Abstract
Character Customization is a well-known functionality in the gaming

industry where users can change certain aspects of the character to suit
their creative needs in various games. The proposed project consists of
creating a basic working prototype of a character customization creator.
Some planned features for this project include the capability to change the
color of the hair, eyes and features of the body such as height and body
size. The following project will also include an animation option to apply
different animations onto the character while inside the customization
mode.

1. Introduction
Most video games are oriented around the player. Video game

makers will often highlight the features of their game as being centered
around the player or allowing the player to craft his or her story and
adventure. This is apparent in many video game press conferences and
showcases.

RPGs (role playing games) champion this idea. Examples include
Fallout 4 and Assassin’s Creed: Unity shown below in Figure 1 and Figure
2, respectively. In RPGs, players take control of a character and adapt a
certain role to accomplish goals to get to the end of the story within the
game. Since many RPG titles have multiple ways of reaching the ending,
players can adapt different roles for every new playthrough. Thus, to give
players a sense of a different adventure each time they begin a new
journey, almost all RPG titles allow players to create and customize a
character. Character creation always happens in the beginning of the game
before any story is introduced.

Fig. 1: Character creator for Fallout 4.

Fig. 2: Character creator for Assassin’s Creed: Unity.

Character creators from multiple RPGs have overlapping

customization elements. Most will allow players to modify features such as
hair style, hair color, facial expression, clothing and equipment. Other
character creators may allow for more exotic customizations such as
positioning of each eyebrow, size of lips, how much the character’s ears
and nose protrude, length of arms and feet size.

For this project, we aim at creating our own character customization
system. Having a good looking and easy-to-use UI (user interface) was one
of the main goals for this project. This is because having an unintuitive and
bad looking UI can draw the user away from the experience. We wanted
the user to have an easy time creating a character as well as being
immersed into the experience.

One feature that we added in our character creator was the option to
preview the character using different animations. While the user is
changing certain features of their character, the user can choose to have
the character perform a certain action. This allows the user to preview
ahead and see if the way the character looks while performing that action is

satisfactory to the user. This is a feature found in few video games where
the user is restricted to just customizing their character without having the
opportunity to preview their character with animations.

To make our character creator, we used the Unity game development
platform. Unity provides a framework complete with the tools needed to
create entire video game, let alone a character creator tool. We used Git as
our version control software. Unity does provide their own version control
but their software imposes a file size restriction. Since our project files were
relatively large, we were compelled to use other tools that did not restrict
overall project file size.

2. Functional Design
The design process for this project started off with a sketch where the

parts of the design idea were taken from great games such as Code Vein
and Destiny 2. Due to the fast growing design ideas in the industry, the UI
design of a 3D game has to meet those standards to improve the user
experience. Therefore, taking all these requirements into account, we
designed a particular UI as shown in Figure 3. The ideas that went into this
were from visualizing the application as a game running on a console.
Video game consoles usually require games to have their button icons
hence, this would be added to the black overlay transparent bar at the
bottom of the design.

The rest of the design process following the conventional design
concepts and the previous scenes. As shown in Figure 3, Figure 4 and
Figure 5, these are the main three scenes used during the project. The final
output of the application turned out to be very similar because of the design
that we followed throughout. There were some elements which we
removed due to unnecessary requirement and lack of space. For example,
the “Load Character” button shown in Figure 1 required us to implement the
saving feature for the application however, this was not proposed in the
project goal therefore, we decided to remove the button overall.

Fig. 3: First scene design of the application in Adobe XD.

Fig. 4: Second scene design of the application in Adobe XD.

Fig. 5: Main scene design of the application in Adobe XD.

The inspiration gathered before attempting this project was from

games known as Destiny 2 and Code Vein (as shown in Figure 6 and
Figure 7 respectively). These games have a common design pattern
because of their 3D games and quality of the design. The design quality is
a trait that would enable any user to play the game even more and become
interested. To implement the project from carefully visualizing the design, it
was essential to have a character with a great quality to mesmerise the
players and help them customize the character further by the accessories
that we provided in the application. Although, Code Vein provides a great
amount of accessories and options, Destiny 2 keeps it simple by only
having a few attributes to customize. However, Destiny 2 shows a better
functionable UI in terms of graphics and user preferences such as having
buttons at a reasonable amount and reaching to a particular option without
needing to click several buttons.

Fig. 6: Code Vein Character Customization design.

The design pattern gathered from both of these games allowed us to

create a design that is suitable for any type of player whether it is a
common player who likes more functionality or a player who requires a
great UI. This design can be further seen in Figure 9 onwards.

Fig.7: Destiny 2 Character Customization design.

3. System Design
The system design that was used in this project turned out to be

smooth because of the decreased amount of button clicks required to move
between scenes. All of the customization attributes are closer to each

other, making it easier to navigate between the panels of the buttons. The
below Figure 8 shows the workflow of the whole system architecture. It
portrays each functionable element and the relationship to the functions

that it provides. The first two scenes are very lightweight due to the scenes
not requiring any other functionality other than moving between scenes. As

the scene level goes up, the functionalities increase and the character
customization attributes are visible to the player. The reason we chose

these main attributes (hair, face, body and clothing) is because these are
required from what we researched from previous games. These attributes

allow the player to customize to their needs.

Fig. 8: Workflow of the system architecture.

4. Implementation

Since the goal of this project was to build a character creator with a
nice looking UI, a considerable amount of time was spent trying to find free
models and assets to work with. Designing our own models and clothing
would have been beyond the scope for this project. As such, we used
Unity’s blacksmith character model featured at GDC 2015 [3]. Models and
assets were found on Unity’s Asset Store.

Scripts were to accommodate how aspects of the model (such as hair
style and clothing) are changed dynamically. To swap out hair, we replaced
the model’s given hair with new hair. Within the script to handle this
behavior, the previous hair was deleted and in its place was the new hair
style. For changing hair color and clothing style, we located the
corresponding body part within the character’s hierarchy and modified the
game object’s textures.

In our prototype, we allow the player to customize four main features:
hair, face, body and clothing shown in Figure 9. Within each feature we
allow for further modifications.

Fig. 9: Main menu for our character customization application.

4.1. Adjusting Hair
Figure 10 shows the first submenu. Users are given a preview of different
hair and beard styles. Users are able to change the model’s hair and beard
and the color of both separately by clicking on a particular style and color.

Fig. 10: Hair submenu

4.2. Facial Expressions using BlendShapes

Figure 11 shows the face submenu. Here, users are given a variety of
options to change the character’s face as well as skin color. Changes to the
face as controlled with various sliders. Clicking and dragging the sliders
from one end to the other will cause changes to the model’s face. For
example, the first slider will control how angry the model looks. The second
slider changes how much the model’s lips will protrude. The third slider
raises and lowers the eyebrows changing how scared the model will look.
The fourth slider adjusts how angry the model will look in the model’s upper
portion of the face. The fifth slider also adjusts the extent to which how
angry the model looks in the model’s lower portion of the face. Finally, skin
color can be adjusted by clicking on any of the colored squares.

This animation along the character’s face was created using
BlendShapes [2] that is a feature of the Unity Game Engine. It allowed us

to control the expressions of the character which is essentially a feature in
most games.

Fig. 11: Face submenu

4.3. Controlling Body Shapes by Shaders
Figure 12 shows the body submenu that allows players to control how

large their character is. This submenu features 3 sliders that allows
adjustment to the three main portions of the model’s body: the head, torso
and legs. Moving the sliders to the right causes their corresponding body
parts to become thicker and bulkier while moving the sliders to the left
causes body parts to become slimmer and leaner looking. This method was
implemented using a vertex extrusion shader to control the facial structure
of the character. This type of shader can also be used for procedural
animation. This surface shader would move the vertices along their
normals by the amount specified in the material of the character’s body
parts.

Fig 12: Body submenu

4.4. Changing Clothes
Figure 13 shows the clothing submenu. This submenu allows users to

adjust the model’s clothing style. For this project, we divided the model in
two allowing the player to only adjust the tops and bottoms of the model.
Users can adjust the tops and bottoms style independently by clicking on a
preview style that they like.

Fig. 13: Clothing submenu

4.5. Animating Character using Mecanim and Rotation
Figure 14 shows how the model’s stance is changed from idle to

walking. With the idle stance, the model mostly moves from side to side.
With the walking animation, the model can be seen walking forward with his
sword in an attack position. Figure 15 shows how the model can be rotated.
By clicking on the model and dragging with the mouse in either the left or
right directions, the model can be rotated left or right to give the user a
preview of how their character will look with all of the customization that
has been done. These animations were created from Mocap data and we
managed to use them using the Mecanim [1] feature to apply onto the
character with ease. Mecanim allowed us to map the bone structure of the
mocap animation onto the bone structure of the character which essentially
makes the character animatable.

Fig. 14: Changing the model’s animation from idle to walking

Fig. 15: Able to rotate the model by clicking and dragging the model

5. System Testing
Since our application was a character creator and was focused

around how the character looks, our application was visually and manually
tested by playing the application and clicking on every button and using
every slider. We compared how the animations and model were being
changed to how we expected them to change. If the model was found to
not be in the correct position during play mode, we would preview the
change while in play mode, update the camera position within the scripts
and then apply the changes to our application.

Fig. 16: Latest test shows that the model was placed too low. The camera angle needed to be adjusted.

For example in our latest test, we found that the camera angle was

too high for the walking animation. This was because most of the
application was tested using the idle stance where the model stands up
straighter without hunching his back. The process that we went through to
fix this issue is shown in Figure 17. While the application was being
played, we adjusted the camera’s position. After finding a suitable position,
the coordinates were updated within the script files. This is the process
that we went through for all tests involving position of game objects.

Fig. 17: To find a suitable camera angle, the the camera angle was adjusted while the application was being played.
The main camera’s transformation position was adjusted. After finding a suitable position, the (x,y,z) coordinates
were updated within the scripts.

In addition to visual testing, we also extensively utilized the console
log in our tests. This was particularly useful for hunting down and fixing
unexpected errors and bugs. The console log was also helpful in finding
unassigned reference exceptions shown in Figure 18. Since a lot of the
buttons in our application directly reference different game objects within
the scene, the console log was helpful in finding buttons that had missing
references. Other errors such as missing or unparsable files due to
incompatible Unity versions were displayed here which helped us find the
files that was causing these errors.

Fig. 18: Console log displaying an unassigned reference exception.

Despite all of our tests,there were some problems that we were not
able to solve. In the beginning stages of our project, we encountered an
error where the textures and materials for the model on Windows
computers were not being correctly loaded. This problem was not found on
Mac computers despite having the same exact files. We were not able to fix
this error through extensive debugging. But miraculously, this problem
seemed to fix itself toward the end of the project when we were focusing on
model customization.

Fig. 19: The materials for the model was not being correctly loaded on Windows computers during the start of the

development period of the application.

6. Conclusion
We were successfully able to build a basic prototype character

creator tool using the Unity Game Engine. Emphasis was placed into
creating an easy-to-use and nice looking UI. We drew inspiration from
existing character creators from various video games. In particular, we
thought that Code Vein’s and Destiny’s character creator were very good
looking and so we emulated their UI into our design. Assets such as hair,
clothing and textures were obtained for free from Unity’s Asset Store.

Since this was just a prototype, we focused only on the most basic
features for customization. Therefore, the future work that we will continue
to work on would contain functionalities such as eye color, female
character customization, better hair shader to look more appealing to the
user, better lighting, clothing material and physics, more
accessories/options to customize etc.

References
[1] U. Technologies, "Unity - Manual: Animation System Overview",
Docs.unity3d.com, 2019. [Online]. Available:
https://docs.unity3d.com/Manual/AnimationOverview.html. [Accessed: 17-
May- 2019].

[2] U. Technologies, "Unity - Manual: Animation Blend Shapes",
Docs.unity3d.com, 2019. [Online]. Available:
https://docs.unity3d.com/Manual/BlendShapes.html. [Accessed: 17- May-
2019].

[3] "Pages - The Blacksmith - Unity", Unity, 2019. [Online]. Available:
https://unity3d.com/pages/the-blacksmith. [Accessed: 17- May- 2019].

