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Abstract 

The problem that encapsulates my project is Object Recognition and Object Detection. 

Additionally, these two problems are combined with Robotics such that the Robotic Arm is to 

follow the movement of specific objects that are thrown to it and attempt to successfully 

catch the object using trained neural networks which process consistent frames through the 

use of a webcam. 

The project gives a starting point to allow the construction of systems that would be used to 

measure the performance of humans in various scenarios i.e. sports. One scenario is through 

the game of ‘pool’ where players can be tested against a gradually improving AI using Deep 

Learning to a point where a player can no longer win. 

Furthermore, applications for this type of interception of objects with a robotic arm range 

from military to assistive operations in the home. The robotic arm can track and intercept 

moving objects therefore, becoming a valuable asset to ground troops by stopping grenades 

and other harmful projectiles. Furthermore, the ability to catch in-motion objects would be 

useful in the field of Socially Assistive Robotics (SAR) which focusses on assisting users 

through social rather than physical interaction [1]. The mission of SAR is to develop the 

computational techniques that will enable the design, implementation and evaluation of 

robots that stimulate social, emotional and cognitive growth. The use of robotic arms could 

encourage rehabilitated patients to lift objects as a method of training and perform tool 

handling exercises.  
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1 Introduction 

This project is based on Deep Learning, which is the sub-field of Machine Learning. In today’s 

world, Deep Learning has taken a trend to solve many problems. The problem that 

encapsulates my project is Object Recognition and Object Detection with the use of a Robotic 

Arm such that the arm is to track the location of a ping-pong ball in 2-D space that is in a 

range specific to the limit of its reach. The arm will then attempt to successfully grasp the ball 

using a trained convolutional neural network which processes consistent frames using a web-

cam. 

My inspiration was drawn from a recent project which is currently being developed by ‘The 

Learning Algorithms and Systems Laboratory’ (LASA) at EPFL research institution. The 

researchers have programmed a robot capable of reacting on the spot and grasping objects 

with complex shapes and trajectories in less than five hundredths of a second [2]; more 

information to follow regarding their process in the Background section.  



1. Introduction 

2 

1.1 Aims and Objectives 

Aim: 

 To create a system that would train a neural network to classify, detect and track 

ping-pong ball(s) in order to grasp them using a robotic arm. 

The aim of this project was to implement a system to grasp ping-pong balls with the use of 

web-cam and a robotic arm. This system would include a specifically created ‘Ball Grasping 

Algorithm’ to work in synchronously with the ball detection feature and several other 

features (mentioned later in this report) to grasp the ball effectively. 

Objectives: 

1. Gathering and creating a training and test dataset of ping-pong balls which are to be 

used for the neural network. 

2. To train the neural network to classify and detect the ping-pong balls. 

3. To process the neural network and display the detect results in real-time using a web-

cam. 

4. To track the ball(s) in its relative positions in 2-D space. 

5. Finding the maximum movement time and angle of each joint of the arm through trial 

and error. 

6. Calculating the angle between the ball and the robotic arm and to move ‘x’ angle. 

7. To implement an algorithm to get the final/current position of the arm and returning 

it to the original position. 
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1.1 Dissertation Outline 
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2 Background 

The problem of grasping objects in flight or on a planar surface by predicting the object’s 

trajectory and intercepting it with robotic arm has been researched deeply in the fields of 

Robotics, Machine Learning and Computer Vision. Currently, the problem of grasping through 

Deep Learning is being focussed at an in-depth level which would allow the robotic arm to 

grasp any type of object by learning the optimum grasping area for each object and 

maximising the chance of successfully grasping it. This project involves Deep Learning to 

learn the features of ping-pong balls and detect them using a processing script. Furthermore, 

the script would be directly linked to the robotic arm however, due to the robotic arm not 

containing any sensors and the arm being slow in movement, it is difficult to apply the Deep 

Learning grasping problem. Therefore, this project involves the implementation of a system 

that uses a trained model on ping-pong balls and calculates the angle between the ball and 

the robotic arm (with the support of the OpenCV library). This allows the robotic arm to 

move the specified angle to grasp the ball. As there have been several attempts in the past to 

catch moving and stationary objects, I shall briefly provide the key and most common 

techniques used in those attempts. 

2.1 Deep Convolutional Neural Network 

Deep Learning is a sub-field of machine learning which uses highly effective network 

architecture to learn specific features of objects. Convolutional neural networks are a special 

kind of neural network for processing data that contains a grid-like topology, e.g. image data, 

which can be interpreted as a 2-D grid of pixels. CNN’s have achieved state-of-the-art 

performance in various applications such as image segmentation, object detection, image 

recognition etc. [34]. 

The inspiration of convolutional networks comes from biological processes in which the 

connectivity relationship between neurons is inspired by the anatomy structure of the animal 

visual cortex. Convolutional neural networks are very similar to ordinary neural networks 

and are made up of neurons that have learnable weights and biases. Each neuron receives 

some inputs, performs a dot product operation and optionally follows it with a non-linearity 

activation function. The entire neural network still represents a single differentiable function, 

i.e., from the raw input image pixels on one end to class scores at the other. For example, 

when processing an image, the input image might have thousands or millions of pixels, but 

we can still extract meaningful features, e.g., edges features, with kernels that only occupy a 

small and restricted area [34]. 
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Figure 1: Example of fully connected neural networks. 

The network shown in Figure 1, shows adjacent networks that are fully connected to one 

another. This involves the features learnt in each layer to be passed on until it reaches the 

output layer which then stores the classification of the object. In addition to convolutional 

layer, CNN also contain pooling layers. The task for the pooling layer is to simplify the 

information in the output from the convolutional layer. The overall goal of the architecture is 

to use the training data to train the network’s weights and biases so that the network does a 

good job classifying input images/data [33]. 

Figure 2: A type of CNN known as Fast-R-CNN [23].  

Figure 2 illustrates how a CNN performs its tasks in different layers to output the 

classification in the image using the ‘softmax’ classifier. 
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2.2 Research 

A group of researchers at LASA [3], devoted their work to the autonomous control of fast 

movements such as catching moving objects at a quick rate. The researchers were inspired by 

how humans themselves learn by imitation and trial and error. This technique is known as, 

programming by demonstration, which shows examples of possible trajectories to catch the 

object. The researchers would guide the robotic arm to the projected target and repeat this 

process several times in order for the robot to learn. To catch objects which are statically 

unbalanced such as a hammer and dynamically unbalanced such as a half-full water bottle, 

the robot creates a model of the object through the cameras whilst the object is in flight. A 

motion capture system, an OptiTrack system by NaturalPoint, with the use of reflective 

markers stuck to the objects help the camera to model the object in mid-air [4]. 

Although their research doesn’t consist of Deep Learning as they use sensory equipment to 

track the movement and rotation of the object. During the training phase, they would use a 

human entity to move the robotic arm to the thrown object’s trajectory. The angular joint 

movement of the arm would be calculated in this process and hence, the joint movement 

values would be used for training. The overview of their full framework is shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: A schematic overview of the system developed by LASA. 

The problem definition for this project consists of grasping specific objects (in this instance, a 

ping-pong ball) that are in the graspable area of the robotic arm. The main aim was to predict 

the trajectory of the moving ball and grasp it however, due to some technical reasons 

regarding inefficient robotic arm functions, the aim was directed towards a stationary ball. 
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Applications for this type of interception of objects with a robotic arm range from military to 

assistive operations in the home. The robotic arm can track and intercept moving objects 

therefore, becoming a valuable asset to ground troops by stopping grenades and other 

harmful projectiles. Furthermore, the ability to catch in-motion objects would be useful in the 

field of Socially Assistive Robotics (SAR) which focusses on assisting users through social 

rather than physical interaction [5]. The mission of SAR is to develop the computational 

techniques that will enable the design, implementation and evaluation of robots that 

stimulate social, emotional and cognitive growth. The use of robotic arms could encourage 

rehabilitated patients to lift objects as a method of training and perform tool handling 

exercises. 

A similar topic in the field of Deep Learning was utilised by Google who want to solve robotic 

grasping by letting the robotic arms learn by themselves. In a normal human scenario, it is 

possible to pick up objects without using eyes however, a link between eyes and an arm is 

much better. In robotics, this is known as Visual Servoing, and in addition to improving 

grasping accuracy, it makes grasping possible when objects are moving around or changing 

orientation during the grasping process. A team of researchers at Google Research, tasked a 

7-DoF robot arm with grasping objects in clutter using monocular visual servoing and used a 

deep CNN to predict the outcome of the grasp. The CNN would continuously re-train itself 

where the start contained a lot of fail however, it gradually became better. Google increased 

the training time by using 14 robots at this problem in parallel. The method for Google’s 

Research consists of two components: a grasp success predictor, which uses a deep 

convolutional neural network to determine how likely a given motion is to produce a 

successful grasp, and a continuous servoing mechanism that uses the CNN to constantly 

update the robot’s motor commands [7]. The result of their approach led to intelligent 

reactive behaviours after over 800,000 grasp attempts which is equivalent to approximately 

3,000 robot-hours of practice. The robot would observe its own gripper and correct its 

motions in real-time. Furthermore, it would separate certain objects to get a better grasp at 

the object [38]. 

[35] shows a system built by ‘Shadow Robotics’ that allows one to create and test robot 

programs through simulations. It also allows to make a robot to grasp something without 

having to learn everything related to Machine Learning and being available on the ROS 

Development Studio. Lastly, the video provided on their site shows how it is possible to grasp 

a ball by adjusting the position of the robot arm. 

 



3. Methodology 

8 

3 Methodology 

In this section, I shall discuss and compare the available methodologies that are supported for 

this project. Secondly, I describe the selected methodology and explain the reasons on how it 

may affect the project in terms of improvement. Finally, I investigate the effects of using the 

testing methodology and how it was able to balance the system to work synchronously. 

3.1 Comparison of Methodologies 

The research in this particular field of Artificial Intelligence is expanding at an enormous rate 

hence, the popular methodologies such as Waterfall would not be considered as appropriate. 

The optimal approach that is followed throughout my project is the Agile methodology. A 

change of requirements is a key factor in this project as opposed to the Waterfall 

methodology, which should only be used when requirements are clearly understood and are 

unlikely to change during system development. Furthermore, this project involves recurrent 

background research which potentially disregards this model as new factors 

(restrictions/challenges) in the project start to arise. 

Additional methodologies were researched to meet the requirements for this project and the 

most suitable found was in the form of an iterative process. This would involve several builds 

to be completed after each stage which include rigorous testing and bug fixing. More variants 

of Agile methodology were explored such as Scrum and Extreme Programming (XP) however, 

Scrum requires working closely with a team and “delivering potentially shippable increments 

of software during successive Sprints, typically lasting 30 days. Once a Sprint has been 

delivered, the Product Backlog is analysed and re-prioritised, if necessary, and the next set of 

functionality is selected for the next Sprint” [5]. The similar scenario is with the XP variant 

which “promotes high customer involvement, rapid feedback loops, continuous testing, 

continuous planning and close teamwork to deliver working software at very frequent 

intervals” [5]. Although, XP might seem a viable approach due to having an iterative-by-

iteration testing, the customer works closely with the development team. Hence, these 

approaches were discarded due to the project not having a specific user group to coordinate 

with throughout the entirety of this project. 

3.2 Selected Methodology 

The variant of Agile approach known as FDD (Feature-Driven Development) originally 

developed and articulated by Jeff De Luca, would be most suitable for this project. Some of the 

best practices for FDD are ‘Developing by Feature’, ‘Inspections’, ‘Configuration Management’, 
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‘Regular Builds’ and ‘Visibility of progress and results’. These practices directly relate to this 

project and the only ethics required would be at the completion of the project. 

Finally, one of the most important project trait would be ‘Feature Prioritisation’ which is 

related to the FDD approach. “Prioritisation by value ensures the most valuable features are 

implemented first, thus reducing the risk of having an unusable product once funding runs 

out. This approach decreases risk of complete failure by allowing “partial” success” [6]. 

3.3 Testing Methodology 

The testing approach that was utilised for this project is to consider the main ‘Aim’ of the 

project and choose a scope. In this case, the scope was to test the amount of times the arm 

successfully catches the ball out of 100 times. The reason why the value ‘100’ is chosen is 

because of the time it takes to constantly run the project and to consider the battery life of the 

robot arm. For a GPU, it would be faster in terms of detection however, the robot arm would 

still follow its slow speed. Therefore, it was essential to select a suitable testing range to 

gather results. 

As mentioned in the selected methodology, the FDD agile approach would be suitable for this 

project. So, each main ‘features’ of the project were tested to synchronously work with other 

features including the robot arm. For e.g. if the ball detection feature was tested to find that 

the ball would not be detected at certain distances, the threshold value would be changed to 

fit that requirement. This would allow for a better detection based on the accuracy of the 

model. For the ball tracking method, FPS rate was highly beneficial however, due to technical 

reasons, GPU could not be used for this project. A CPU would perform slow tracking as the 

model is being processed each frame to ensure the object is not missed. To get higher FPS 

rate in CPU, a method called ‘Threading’ was attempted however, it did not provide the rates 

needed for a faster object tracking method. The angle calculation feature was tested using 

OpenCV as it was essential to find correct angles in the testing phase. There were certain 

scenarios where the angle was not accurate, so the angle formula was changed to improve 

that. Additionally, the angle of the web-cam helped to solve this issue. Due to the angle using 

‘tan’ quadrants, it would give negative angles. To fix this, a method was developed for using 

absolute values for angles. 

Lastly, the whole system was tested after all the features were successfully in sync. The last 

testing stage was to adjust the environment lighting to get the best detection possible which 

would allow for the whole system to work effectively.  
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4 System Design 

Figure 4: Block diagram for robot grasping system. 

Designing the system was a tough task for this project as the frameworks had not been 

decided and there was no clear destination of the end goal of the project. Deep Learning is a 

field with many uncertainties which makes it difficult to predict the outcome of the system. 

Figure 4 illustrates the entire system flow in term of blocks which is known as a ‘Block 

diagram’. Each of the process blocks represent a feature of the system which have specific 

tasks to complete. Additionally, there are ‘Offline’ process blocks which are tasks that were 

done beforehand such as training a deep neural network. System blocks play a major role as 

without them, the project would not commence. The trained model is then used for ball 

detection using the web-cam. The information is flowed throughout the system between each 

process hence, the ball is tracked after detection. Next, the robot arm would be constantly 

updating the Aruco marker attached to it and sending the coordinates of it to the angle 

calculation block. Once the angle is calculated, it is passed onto the ‘Ball Grasping Algorithm’ 

to start the movement and grasp the ball at the given angle. This process is iterated on a loop 

and so, the system will try to detect a ball in the environment at every stage. Finally, the robot 

arm will stay idle until a stationary ball is detected, and the coordinates are steady for the 

angle to be precise.  
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5 Implementation 

The immense work that was implemented in this project range from new Deep Learning 

methods to novel algorithm for controlling a robotic arm.  The below sub-sections are the 

building blocks for this project in the order of the implementation. The main objective of this 

section is to portray the ‘lifeline’ of this project from start to end. The section commences 

with gathering the training and test dataset needed for the neural network. This is followed 

by training different DNNs (Deep Neural Network) and comparing the FPS rates. Lastly, the 

Ball Grasping algorithm is explored featuring the robotic arm which is scripted in Python 

(programming language). 

5.1 Dataset Creation 

This stage of the project consisted of finding the dataset that would be used to train the 

neural network. This is a crucial process and time consuming due to the amount of data 

needed for certain networks to generate a decent accuracy. Object Detection requires a 

dataset with a specific folder structure which varies according to the architecture. The 

DetectNet architecture by NVIDIA, uses a structure as shown in Figure 5 [10], where each 

image inside the image folder must have an associated text file in the label folder.  

Figure 5: The input folder structure for DetectNet consisting of images and labels. 

The label (text) file is encoded with 15 columns which represent certain values that are 

needed for the object to be detected at a higher rate. The label (as show in Figure 6) is of 

‘Tennis Ball’ as this was the first category to be used for training purposes. The second label, 

‘DontCare’, denotes regions of the images that would be ignored whilst the network is being 

trained. The ‘DontCare’ label can also be used as the negative images of the dataset. For 

example, in Object Classification, it is usually the case where there are two separate folders, 

‘positive’ for images that are considered interesting (or the object to be classified) and 

‘negative’ for images that are not to be classified. This creates a balance between the two 

classes and avoids ‘Overfitting’. 
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Additionally, the ‘DontCare’ label is used in this manner to prevent objects being counted as 

false positives and hence, the network will ignore these specified regions. For more 

information, please visit [11]. 

 

Figure 6: The bounding box format required by DetectNet. 

There have been several problems regarding the dataset such as the size and format. The size 

of the dataset is a key aspect when training a Deep Neural Network where the amount of data 

required for machine learning relies on many factors, such as [8]: 

• The complexity of the problem – nominally the unknown underlying function that 

best relates your input variables to the output variable. 

• The complexity of the learning algorithm – nominally the algorithm used to 

inductively learn the unknown underlying mapping function from specific examples. 

The ‘Tennis Ball’ category was chosen because of the spherical shape which can be grasped 

from any angle with ease. Initially, the dataset was gathered from the ILSVRC 2012+ 

(Imagenet Large Scale Visual Recognition Challenge) database. Approximately 1162 images 

were available for this category however, the associated label files which contains the 

bounding box locations of the object(s) inside the images were of ‘xml’ format. This resulted 

in a dataset conversion from XML to KITTI format. The KITTI [9] format is used by the 

DetectNet framework which is shown in Figure 6. 

5.1.1 PASCAL VOC to KITTI Dataset Conversion 

The Imagenet Dataset [12] gathered contained a PASCAL VOC [13] format which had specific 

XML tags in an order. KITTI data used a text file format with a different layout therefore, a 

Python script was created to get the main XML tags (bounding box coordinates and the label) 

and create text files in the KITTI format. The rest of the values are not necessary for KITTI as 

they can be null or ‘0.0’. 

5.1.2 Tensorflow Dataset Conversion 

Tensorflow’s Object Detection API, which was released to the public in June 2017, offers one 

of the best performance and usability in the Machine Learning field. For more information on 

Tensorflow, please go to section 5.4.2. An adjustment had to be made during this stage of the 

project, which was to use ‘Ping-Pong Ball’ as the category instead of the ‘Tennis Ball’. This was 

due to the robotic arm’s gripper could not withstand the size of the tennis ball hence, unable 
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to grasp it at a later stage. A new dataset size of 477 images was created with their 

corresponding label files; 377 images from the ILSVRC dataset and 100 manually labelled 

images by using “LabelImg” [19], a label tool, which outputs XML files with the bounding box 

coordinates. The dataset was split between training and validation images on a 70:30 ratio 

respectively. The validation images were used to validate the model’s performance against 

unknown images. 

Tensorflow’s Object Detection API required annotation files in the XML format however, 

some label files from a certain year had to be tweaked due to inconsistency. The ILSVRC 

dataset had mixed images from the years, 2012, 2013 and 2014. The problem was regarding 

the bounding box coordinate tags in the XML files (from the year 2014), which followed an 

inconsistent order compared to the other years. 

5.1.3 YOLOv2 Dataset Conversion 

YOLOv2 [17] is a real-time object detection framework originally written in a Deep Learning 

framework called ‘darknet’ [25] (written in programming language, ‘C’) however, due to ‘C’ 

not being user-friendly, this project uses the Python-based version of ‘darknet’ which is called 

‘darkflow’ [18]. For more information on YOLOv2, please go to section 5.4.3. 

YOLOv2 is combined with Tensorflow which share the same data format (XML), hence no 

dataset conversion was needed from the dataset used for Tensorflow. 

5.2 Data Augmentation 

Augmentation of data involves the data to be changed in various ways to increase the 

performance of the model. Data was changed in terms of colour and shuffling train/validation 

images. Other techniques for data augmentation may include [27]: 

• Scaling 

• Translation 

• Rotation (at 90 degrees) 

• Rotation (at finer angles) 

• Flipping 

• Adding Salt and Pepper noise 

• Lighting condition 

• Perspective transform 

Augmentation is needed is because it can generate additional data if there is a lack of quantity 

issues with the current dataset. For this project’s case, there were fewer data however, more 

images were not needed since YOLOv2 and Tensorflow outputted great performance for the 
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trained models. Below, Figure 7 displays an image retrieved from the dataset with the change 

of lighting that occurred during the augmentation process. This change of lighting was not a 

great method as the neural network considered colour as a more meaningful feature than 

grayscale. As grayscale turned any coloured ball to white, it did not recognise the ping-pong 

balls efficiently in different lighting environments. Therefore, coloured dataset was further 

used during the project. 

Figure 7: The lighting condition on the image changed from original (left) to grayscale (right). 

5.3 Conversion Code Snippets 

5.3.1 Pascal Conversion 

   Figure 8: Conversion code from new ILSVRC labels to old PASCAL VOC label style. 

: Conversion code from new ILSVRC labels to old PASCAL VOC label style.Figure 37 shows the 

conversion code that was created to fix the error or new ILSVRC label files not containing the 

“.jpg” extension of the image in the XML files. Therefore, this fixed the labels into default 

(PASCAL) format. 
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5.3.2 Tensorflow – XML to CSV 

Figure 9: Conversion code from XML to CSV format required by Tensorflow. 

The above code (Figure 9) contains the steps needed to convert from XML (PASCAL) format 

to CSV. Tensorflow requires CSV format (as shown in Figure 10) in further steps when 

converting to TFRecord files as these are standard input format and an easier way to 

maintain a scalable architecture. For more information regarding TFRecords and the 

difference between “Naïve vs TFRecord” method, please visit [28]. 
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Figure 10: A successfully converted CSV file. 

5.4 Training a Deep Neural Network for Object Detection 

There were three different Deep Learning frameworks used throughout the entirety of this 

project: 

• DetectNet (DIGITS by NVIDIA) 

• Tensorflow (by Google) 

• YOLOv2 

5.4.1 DetectNet 

The DetectNet architecture is used by the DIGITS platform which performs common deep 

learning tasks while displaying real-time training performance. Figure 11 shows the process 

of how DIGITS represent the labelled images to train DetectNet. Each grid square is labelled 

with two key pieces of information: the class of object present in the grid square and the pixel 

coordinates of the corners of the bounding box of that object relative to the center of the grid 

square. In the case where no object is present in the grid square, a special “dontcare” class is 

used so that the data representation maintains a fixed size. A coverage value of 0 or 1 is also 

provided to indicate whether an object is present within the grid square.  In the case where 

multiple objects are present in the same grid square, DetectNet selects the object that 

occupies the most pixels within the grid square. In the case of a tie, the object with the 

bounding box with the lowest y-value is used [16]. 
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Figure 11: An example representation of DetectNet input data. 

The DetectNet Architecture 

[16] The DetectNet architecture has five tasks that are specified in the Caffe model definition 

file. Figure 7 displays the training process throughout the architecture highlighting three 

key stages: 

1) Data layers ingest the training images and labels and a transformer layer applies 

online data augmentation. 

2) A fully-convolutional network (FCN) performs feature extraction and prediction of 

object classes and bounding boxes per grid square. 

3) Loss functions simultaneously measure the error in the two tasks of predicting the 

object coverage and object bounding box corners per grid square. 

Figure 378 shows the validation process within the architecture with its two main stages: 

4) A clustering function produces the final set of predicted bounding boxes during 

validation. 

5) A simplified version of the mean Average Precision (mAP) metric is computed to 

measure model performance against the validation dataset. 

DetectNet Training Process 

To train a neural network, it is essential to use a GPU if the dataset size is large. In the initial 

process, there were problems that occurred while installing several libraries required for 

DIGITS such as NVIDIA Caffe (preferred version 0.15.1+), DIGITS v5 and other prerequisites 

for the framework. These libraries were not supporting specific versions which led to large 

amount of time spent to successfully install DIGITS with NVIDIA Caffe [15]. 

There were two major setbacks which led to migrating the training framework to 

Tensorflow: 
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1. The GPU contained problems with installations of libraries which led to enormous 

time being spent. 

2. After training the model, Digits only showed inference on the platform for each image. 

There was no other way (at the time) to inference through webcam except by 

embedding NVIDIA Jetson modules [21] into the GPU which are costly and used C++ 

for inferencing which was not possible to be integrated with the robotic arm. 

5.4.2 Tensorflow 

Tensorflow is an open source library for numerical computation developed by the Google 

Brain team. It was primarily created for machine learning and deep learning network 

research. Detecting objects in images has been around for a long time however, detecting 

images in a video or a stream with a decent accuracy was a challenge. However, Tensorflow 

has tackled this problem and released their framework to the public while making it easy to 

train a model. 

The API has been trained on the COCO (Common Objects in Context) dataset  consisting of 90 

most common found objects with a total of 300K images. It also provides a great selection of 

models from its ‘Model Zoo’ including: 

• Single Shot Multibox Detector (SSD) with MobileNet, 

• SSD with Inception V2, 

• Region-Based Fully Convolutional Networks (R-FCN) with Resnet 101, 

• Faster RCNN with Resnet 101, 

• Faster RCNN with Inception Resnet v2 

Figure 5 displays the sample range of models that are available to be tested in a real 

environment. To compare the accuracy and speed of the pre-trained models, I selected the 

‘ssd_mobilenet_v1_coco’ and ‘faster_rcnn_resnet101_coco’ model to be inferenced through 

the web-cam. The results were very similar to the ones shown in Figure 6 [22]. Consequently, 

it was decided to train the custom object of ‘Ping-Pong Ball’ on the MobileNet pre-trained 

model as it was currently the fastest with a decent mAP. 

Furthermore, this comparison improved my knowledge with two key points: 

1. Good performance on small objects correlates with performance on bigger objects.  

2. Input resolution affects detection accuracy of small objects. (as shown in Figure 25) 
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Figure 12: Sample selection of models trained on the COCO dataset. 

Figure 13: Speed-accuracy trade-offs for modern convolutional object detectors. 

Tensorflow Object Detection Classifier Training Steps 

The following steps were followed to train a model in Tensorflow: 

1. Install pre-requisite libraries including Tensorflow-GPU. 
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2. Create the Object Detection directory structure (by cloning the ‘models’ directory 

from Github). 

3. Gather and label images. 

4. Generate training data. 

a. Convert all the XML to CSV (Comma-Separated Values) file for both ‘train’ and 

‘validation’ set of images. 

b. Generate each ‘TFRecord’ [14] from the previously created CSV files. 

5. Create label map (Protobuf text (pbtxt) file) and configure training by choosing the 

MobileNet model. 

6. Train the object detector. 

7. Export inference graph (See further about inference in section 5.5) 

Tensorflow has several advantages over DetectNet giving it the ability to be more efficient for 

training CNNs. Firstly, Tensorflow has a feature called ‘checkpoint’ which is triggered when 

a model is in the training phase. Checkpoints provide an easy-to-use and an automatic 

mechanism for saving and restoring models. Therefore, it is possible to stop a model being 

trained after certain number of steps and retraining that same model from the same step. 

This provides time around the user as some may not want to leave the model running 

overnight. However, if DetectNet training is stopped, one would have to re-train the model 

from start. 

Another advantage of Tensorflow is that it is simple to inference as it contains sample source 

code ready to inference a pre-trained model. Finally, Tensorflow contains a wide variety of 

pre-trained models compared to DetectNet and there are more users dwelling on this 

framework providing help to beginner users in comparison to DetectNet (Digits). 

The graph named, Total Loss, indicates the loss of the model which is displayed through 

‘Tensorboard’; a real-time graph visualisation tool. A key ideology for loss graph is that, ‘the 

lower the loss, the better the model’. It is clearly visible in Figure 14 that the loss is gradually 

being minimized after certain number of epochs/iterations. The loss of the model is 

calculated by interpreting how well the model is performing for the training and validation 

datasets. However, due to the low amount of data in each set, the loss value fluctuated 

frequently until its learning rate (Figure 15) was at minimum.  

For this model, graphs such as ‘Loss of No. of Positives’ and ‘Loss of No. of Negatives’ were 

also visualised to test the suitability of the model on new data. These graphs can be viewed in 

the   
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Appendices as Figure 38 and Figure 39 respectively. 

Figure 14: Total Loss graph of the trained model on Tensorflow. 

 

Figure 15: Learning Rate graph of the trained model on Tensorflow. 
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5.4.3 YOLOv2 

YOLO (You Only Look Once) is a state-of-the-art real-time Object Detection which uses a 

completely different approach to modern classifiers. Modern approaches to object detection 

are currently extensions of image classification models. Some of the examples of current 

models are R-CNN, Fast R-CNN, Faster R-CNN, R-FCN and SSD [23]. 

However, YOLOv2 has currently the best approach compared to the other models. The 

rationale behind calling the system YOLO is that rather than pass in multiple sub-images of 

potential objects, you only pass in the whole image to the deep learning system once. Then, 

you would get all the bounding boxes as well as the object category classifications in one go. 

This is the fundamental design decision of YOLO and is what makes it a refreshing new 

perspective on the task of object detection [24]. YOLO subdivides the image into a 13x13 grid 

where each cell (anchor) is responsible for predicting 5 bounding boxes. A bounding box 

describes the rectangle that encloses an object. Additionally, YOLO outputs a confidence score 

that tells us how certain it is that the predicted bounding box encloses an object. The full 

process is shown in Figure 7 [26]. 

During the PASCAL VOC detection challenge dataset, YOLOv2 achieved a mAP of 63.4 (out of 

100) at 45 FPS rate compared to the Faster R-CNN model which generated a mAP of 73.2 but 

only at a maximum of 7 FPS rate. YOLOv2 outperformed R-CNN and all its variants. The 

comparison of YOLO to other object detection frameworks is show in Figure 8. 

Figure 16: The YOLO object detection model. 
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Figure 17: Comparison of object detection frameworks with respect to mAP and FPS rate. 

YOLO Training Process 

The training for custom object (ping-pong ball) was simple on this framework as there were 

not many changes needed to be made to the pre-trained model. The training process was 

mentioned on the Github repository [26] of the framework where the only changes made 

were in the configuration file by changing the number of ‘classes’ in the ‘region’ layer. 

Furthermore, inside the ‘convolutional’ layer, the ‘filters’ variable was changed to match for 

the number of classes used in the ‘region’ layer. Finally, the ‘labels.txt’ was updated to only 

contain the ping-pong ball label. However, the label was changed to “sports ball” due to the 

length of the label which did not fit into the frame window hence, blocking the confidence 

score in the frame. The pre-trained weights were loaded from the original YOLO website [26]. 

Once the training commenced, the number of epochs will show the ‘loss’ and ‘average loss’ for 

each step. To get a desired outcome from the model, it was essential to leave the training 

running until the loss did not change and below the value 1.0. 

5.5 Inference Visualisation 

Inferencing in AI is similar to human inferencing as it is the process of inferring new images 

based on previously trained dataset. The different types of frameworks used during this 

project produced a variety of inferences where some were faulty (also known as false 

positive/negative). These are measured in the form of a Confusion Matrix which consists of 

four outcomes: 

1. True Positive – Correct positive prediction 

2. False Positive – Incorrect positive prediction 

3. True Negative – Correct negative prediction 
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4. False Negative – Incorrect negative prediction 

It is essential to minimise both FP and FN however, FN should be drastically reduced as it 

holds the chance to skip actual classified object. Table 1 below shows the confusion matrix 

which was deduced from this project. It contains data from 144 validation images and 

inferenced within Tensorflow. 

 Predicted Class 

 

 

 Ping-Pong Ball Not Ping-Pong Ball 

 

Actual Class 

Ping-Pong Ball TP = 96 FP = 15 

Not Ping-Pong Ball FN = 3 TN = 30 

Table 1: Confusion matrix for measuring ping-pong ball detections. 

Tensorflow Inference 

Tensorflow provides sample detection code to be used for images however, the code had to 

be tweaked to be used for real-time video inferencing. As mentioned previously, tennis ball 

was the first category to be trained for this project which had a final test accuracy of 94.1% 

(as shown below in Figure 18). 

Figure 18: Tensorflow – MobileNet accuracy of ‘Tennis Ball’. 

Moreover, to test the accuracy of the model, it was essential to use a test image from both 

categories and calculate the accuracy. The commands and its associated accuracy of the 

image was outputted into the terminal as shown in Figure 19 and Figure 20. The full 

comparison of accuracies against the FPS rate between all frameworks used can be found in 

section 5.5.2.  
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Figure 19: Trained MobileNet model processed on a test image of the ‘tennis ball’ category. 

Figure 20: Trained MobileNet model processed on a test image of a different category. 

 
As ping-pong ball was later introduced to the project, the model was separately trained in this category. 

However, due to less images for the training set, the final test accuracy generated was at 85%. The 
detections were still outstanding in certain images ( 
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Figure 21 and  
 

Figure 22). Due to the lack of adequate lighting and occluded ping-pong balls because of the network not 
being capable enough to extract certain features of the ball, some images were not detected ( 

 

Figure 23).  
 

Figure 21: Ping-Pong ball detected using the Tensorflow trained model (1/2). 

 
 

Figure 22: Ping-Pong ball detected using the Tensorflow trained model (2/2). 

 

 

Figure 23: Sample images where detections did not occur with Tensorflow trained model.  

YOLOv2 Inference 
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Inferencing in the YOLO framework was challenging due to the lack of sample code at the 

time. Therefore, it was difficult to script for inferencing through a webcam. The accuracy 

produced by the model was 72% from the total of 477 images that were used. Figure 24 

shows the successful detections from the model even though, the model was unsuccessful in 

detecting from certain images (as shown in Figure 25). The model was unsuccessful because 

YOLOv2’s approach for detection is different compared to other frameworks. The neural 

network is applied to the full image compared to other detection systems which repurpose 

classifiers by applying the model to regions of the image and considering high scoring regions 

as detections. For further information, visit section 5.4.3. 

 

Figure 24: Group of images that were tested using the trained YOLOv2 model. 



5. Implementation 

28 

 

Figure 25: Original images and processed images showing incorrect detections of ball. 

As shown in the images above, persons were detected rather than the ping-pong balls. The 

neural network did not learn the features for the ball with more blurred images. Although, 

the balls stand out in the background, the detections failed. In comparison, Tensorflow’s 

detection produced accurate results at a lower FPS rate. The GPU could not be used during 

processing due to the lack of compute capability (as shown in Figure 26). Inferencing on a 

GPU would be an optimum choice for the YOLO framework as it is by-far the fastest 

framework detection system yet. To see the YOLOv2 inferencing in action, please visit the 

following links: 

• Single ping-pong ball detection: https://www.youtube.com/watch?v=VWSaJcT6S2Y 

• Multiple ping-pong balls detection: 

https://www.youtube.com/watch?v=g0T7vHr_gVY 

• YOLOv2 inferencing before training: 

https://www.youtube.com/watch?v=QtSFVG_9_o4 

https://www.youtube.com/watch?v=VWSaJcT6S2Y
https://www.youtube.com/watch?v=g0T7vHr_gVY
https://www.youtube.com/watch?v=QtSFVG_9_o4
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Figure 26: Error produced by using a low compute capability GPU on inferencing. 

5.5.1 Inference Code Snippets 

Tensorflow 
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Figure 27: The full code for object detection in images through Tensorflow. 

From the above code (Figure 27), the important area of the inferencing commences from the 

‘Model Preparation’ stage where the trained model and config files are assigned to variables. 

The assigned graph/model is then loaded into the memory which is later used in the main 

‘with’ statement which ensures the code within it is “cleaned” after being used. Furthermore, 

the ‘for’ loop inside the ‘with’ statement traverses through all the testing images and draws 

the bounding box, displays the confidence score and its associated annotation for each 

detected object. However, this code was optimised to apply to web-cam frames (check 

Appendices).  
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YOLOv2 

Figure 28: The full code for object detection in YOLOv2. 

The ‘detect_ball’ function was written to loop through the frames from web-cam continuously 

while detecting the coordinates of Aruco marker (more information in section 5.8) and the 

center of the detected ball. These two coordinates would be fed to the angle calculation 

formula and assist the robotic arm to move the specified angle. 
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5.5.2 Accuracy vs FPS Rate Comparison 

 FPS 

Frameworks Accuracy (%) CPU GPU 

Tensorflow 85 0.4 21 

YOLOv2 72 0.5 26 

Table 2: A comparison of frameworks against accuracies and FPS rate. 

This table compares the frameworks used in this project and their related confidence scores 

that the trained model achieved with the FPS rates. As deduced, both frameworks have their 

advantages and disadvantages. Tensorflow’s model achieved a higher accuracy where it could 

detect the blurred balls whereas YOLOv2’s model could not. However, the accuracies could be 

improved on YOLOv2 by bringing additional training images. 

The FPS rates were similar in both the frameworks however, YOLO is known for being the 

fastest detection system. Hence, it can achieve higher FPS rates with better GPUs likewise 

with Tensorflow. 

5.6 Ball Tracking 

Ball tracking is a method to locate the ball throughout all the frames from using the web-cam. 

To emphasise, the trained model performs detection on each frame and hence, it is portrayed 

as the ball is being tracked. There were two different approaches implemented for tracking 

such as using OpenCV and by using YOLOv2. I shall compare and discuss both approaches, 

stating the key advantage/disadvantage. 

OpenCV provides a fast method to object tracking however, not by using Deep Learning. It 

uses contours and colours to find a specific ball. To find an orange ping-pong ball, specific 

HSV values were explored. Figure 29 shows the variety of interfaces produced from the 

Python code where the bottom left image consists of the ‘mask’ interface and the bottom right 

is of the ‘threshold’ interface. The trackbar includes the HSV range values for the orange ball 

however, if a different coloured ball was needed to be tracked, the trackbar would have to be 

altered. The HSV values were also adjusted to track the white ball however, the white semi-

circle in the background took precedence over the white ball, resulting in an error of tracking 

(as shown in Figure 42). Alternatively, the YOLOv2 approach includes training a neural 

network to detect the ball in every frame that is fed from the web-cam. 
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In comparison, the OpenCV method is faster than YOLOv2 because it does not use any trained 

model to perform inference on frames. Inferencing per frame takes a huge amount of load on 

the CPU/GPU. However, since using OpenCV only works for certain colours, it is not effective 

to be used for detection of ping-pong balls even though it generates a faster FPS rate on a CPU 

compared to YOLOv2.  

 

Figure 29: Group of interfaces in orange ball tracking in OpenCV. 

5.7 Robotic Arm Movement 

The robotic arm is based on Java with USB port to connect with the computer for deploying 

scripts. However, since the frameworks used in this project were capable of running Python, 

it was an optimal approach to use a Python-based framework for controlling the robotic arm. 

For moving the arm, the maximum angular limit was needed to be found through trial-and-

error because there are no sensors attached to it. The joint limits of the robot are summarised 

in Figure 30 [29]. Furthermore, the angular limits were converted to time as the arm had pre-

determined functions to work with timed movement. Equation 1 shows the formulae that 

was used to find the rotation rate in any joint.  
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𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
((𝑏𝑎𝑠𝑒 𝑟𝑖𝑔ℎ𝑡 𝑎𝑛𝑔𝑙𝑒 𝑙𝑖𝑚𝑖𝑡) − (𝑏𝑎𝑠𝑒 𝑙𝑒𝑓𝑡 𝑎𝑛𝑔𝑙𝑒 𝑙𝑖𝑚𝑖𝑡))

𝑏𝑎𝑠𝑒 𝑚𝑎𝑥 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛
 

Equation 1: Formulae to calculate rotation rate. 

 

Figure 30: Joint Maximum Rotation Limits and times. 

This rate is used to convert the degrees into a rotation time with a user-supplied angle offset 

(angle between arm and ball). One of the problems that occurred while rotating the arm is 

that the gear wheels slip, causing the arm to move faster for the first few milliseconds and 

few more milliseconds to stop moving. This causes inaccuracies in the timed-movement, 

effectively making the arm unsuccessful at grasping the ball. A solution to this was to add 

time to the movement between certain angles which can be seen in Figure 43. 

5.8 Computer Vision Techniques for Angle Calculation 

This stage of the project is a key feature as calculating the angle is needed to know where the 

ball was in the surrounding region. Angle calculation is useful when there are no sensors 

available. To implement this feature successfully, two points would need to be found; a fixed 

point of the arm which does not move regularly and a second point for the ball. These two 

points would act as coordinates in 2-D space. The first point was calculated with the use of a 

library called ‘Aruco Marker’ [30] which is used to detect certain markers containing 

information inside them. The second point was simple because it is the midpoint of the 

detected ball’s bounding box. Both points were included in a trigonometry formula to 

calculate degree based on quadrants (as shown in Equation 2). 
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𝑎𝑛𝑔𝑙𝑒 =  tan−1 (
(𝑦𝐴𝑟𝑢𝑐𝑜𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑦𝐵𝑎𝑙𝑙𝑐𝑒𝑛𝑡𝑒𝑟)

(𝑥𝐵𝑎𝑙𝑙𝑐𝑒𝑛𝑡𝑒𝑟 − 𝑥𝐴𝑟𝑢𝑐𝑜𝑐𝑒𝑛𝑡𝑒𝑟)
) ∗

180

𝜋
 

Equation 2: Formula to calculate angle based on two given points. 

Figure 31: Calculated angle in bottom left corner with the enlargement of the Aruco marker. 

5.9 Ball Grasping Algorithm 

This algorithm was created to ensure the information flow throughout the system and other 

main features of the project.  

Figure 32: Block diagram of the Ball Grasping Algorithm. 
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The algorithm consists of certain variables that define the ROTATION_RATE; which is 

calculated from specifying the max rotation limits of the joint of the robot. Then, the angle 

would enter the scope of the algorithm where it would be passed to the 

ROTATION_TO_OBJECT variable to get the time (in milliseconds) to move towards the ball. 

Now, a main block of the algorithm takes place hence, movement of the arm. The ‘Robot 

Framework’ [20] is a simple and small API which provides all the movement of the robot. 

“Movements are based upon the BitPattern class, and you can feed arbitrary bit patterns to 

it, but all those the arm is currently capable of are represented above.” It is also capable of 

combining movements with the same time-frame. 

From here, there are two different behaviours; tan positive and tan negative based on the 

quadrants. For each of those quadrants type, the robot arm processes a different movement. 

For example, For the negative quadrant, it rotates clockwise while for positive angles, it 

moves counter-clockwise. Next, the default position function of the algorithm ensures the 

robot returns to the original position. The default position is the inverse of the normal 

grasping movement hence, it will always return to the default position. However, at some 

cases, the arm has few flaws; the gear chains are fairly loose in the “servos” it uses for the 

movement [20]. This causes the arm to move at different speeds. A solution to this was to add 

extra time to certain quadrant movements by finding the correct time needed through trial-

and-error. 

Lastly, a video of the entire system operating in similarity and synchronously to the design 

diagram of this project, can be seen here: https://www.youtube.com/watch?v=eSSsii3 

https://www.youtube.com/watch?v=eSSsii3
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6 Challenges/Problems 

This sections briefly illustrates the challenges that were faced throughout the lifespan of this 

project. These problems are linked to references to locate the solution if needed. Table 3 shows 

the list of problems along with their solutions. 

Problems References 

Undefined reference to 

cv::VideoCapture() 

https://github.com/facebook/C3D/issues/253 

Pip install fails on Cython 

dependency 

https://github.com/h5py/h5py/issues/535 

Darknet YOLOv2 added to OpenCV 

officially 

https://github.com/pjreddie/darknet/issues/242 

Tensorflow 1.4 using CUDA 9 https://github.com/tensorflow/tensorflow/issues/14244 

Tensorflow GPU .whl is not 

supported wheel on this platform 

https://github.com/tensorflow/tensorflow/issues/7552 

Libcublas.so.9.0 Import error. 

Cannot open shared object file 

https://github.com/tensorflow/tensorflow/issues/15604 

DetectNet Kitti format labels in 

custom dataset (with custom class) 

https://github.com/NVIDIA/DIGITS/issues/1561 

DetectNet on custom dataset https://github.com/NVIDIA/DIGITS/issues/1678 

Cannot set Caffe path manually https://github.com/NVIDIA/DIGITS/issues/1199 

Build Caffe error https://github.com/BVLC/caffe/issues/5645 

Tensorflow Object detection API on 

windows – No module named 

“utils”. 

https://github.com/tensorflow/models/issues/3164 

Table 3: A table indicating the problems found in the project and their solution links. 

  

https://github.com/facebook/C3D/issues/253
https://github.com/h5py/h5py/issues/535
https://github.com/pjreddie/darknet/issues/242
https://github.com/tensorflow/tensorflow/issues/14244
https://github.com/tensorflow/tensorflow/issues/7552
https://github.com/tensorflow/tensorflow/issues/15604
https://github.com/NVIDIA/DIGITS/issues/1561
https://github.com/NVIDIA/DIGITS/issues/1678
https://github.com/NVIDIA/DIGITS/issues/1199
https://github.com/BVLC/caffe/issues/5645
https://github.com/tensorflow/models/issues/3164
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7 Evaluation 

In this section, I shall describe the evaluation method that was used for evaluating the scope of 

this project. Then, I explain the reasons for choosing the method by comparing against other 

methods. Finally, I present the evaluation results gathered and discuss the effectiveness of the 

results. 

7.1 Evaluation Method 

For the evaluation stage, I used a method in the branch of Software Testing which is known as 

‘White-box’ testing. 

White-box testing [32] is recognised as an efficient method in finding errors/problems. This 

type of testing is mainly done by the software developer to optimise the code, find hidden errors 

and to enforce the quality of the software system. A great advantage of this testing is that, “due 

to required internal knowledge of the software, maximum coverage is obtained” [31]. The 

reason for choosing this testing method compared to Black-box is because of various algorithms 

that would be implemented in this project hence, needing to improve the algorithm constantly. 

The robotic arm should be able to perform its movement smoothly in accordance to the webcam 

which would process the algorithm to grasp the object. Therefore, White-box testing would help 

optimise the algorithm and “clean” the code to generate enhanced results. This method 

significantly improved the functionality of the robot arm. 

I carried out the testing phase and gathered data for the chosen testing scope. Next, I performed 

statistical analysis to evaluate the aim of this project. This analysis stage was critical to identify 

where the system underperformed in functionality. 

7.2 Evaluation Results 

The data received from testing indicated that the algorithm was 82% successful in grasping the 

ball accurately whereas the 18% resulted in failure (Figure 33). For testing, I let the robot arm 

attempt to grasp the ball 100 times in different locations. Two main phases were tested in 

relation to the testing scope; performance and usability.  

7.2.1 Usability 

The result was carefully analysed, and it was deduced that the failures occurred due to 

inaccuracy of time movement (milliseconds). A main problem with this robotic arm is that the 

battery runs out quite fast which results in inaccurate testing results. Regarding robustness, the 

robot arm has problems in detecting certain coloured balls in some lighting conditions. For e.g. 

it would show a low confidence score for a white ball in bright lighting compared to an orange 
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ball. Additionally, it was found that the ball was more visible to the detection system in dark 

background. Furthermore, to test the priority of the grasping algorithm, two balls (white and 

orange) were placed at two different locations to see which ball was prioritised. Surprisingly, 

the ball with a higher confidence score was grasped first. Lastly, a major usability issue is the 

‘area of reach’ for the robotic arm as it is unable to grasp a ball which is not in a desired region. 

The arm would still attempt to move and grasp the ball by calculating the angle, however, it will 

be unsuccessful. In this context, the ball would have to be on the inner-edge of the semi-circle 

shown in the video in section 5.9. Indeed, this is a usability problem and could only be solved 

with ‘Future Work’ and better resources. 

7.2.2 Performance 

Performance of the robotic arm highly depends on the deep learning model accurately detecting 

the model and with speed. As mentioned in section 5.5.2, the FPS rates were very low in CPU. 

Due to a technical problem in GPU, it was decided to use CPU for testing. However, the FPS rate 

was low resulting in implementing a ‘wait’ timer of 10 seconds for the robotic arm. This would 

help the frames detect a change in movement of ball and update the new location for angle 

calculation. Other performance issues with the model could be solved with more training data to 

get higher accuracy for the detection. 

Figure 33: A pie-chart of the success vs failure rate in testing. 
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8 Conclusion and Future Work 

After evaluating the test results, it was evident that the system did not perform that effectively 

as proposed in the beginning of the project. This was because of some errors likely with the 

robotic arm which made it incapable of grasping the ping-pong ball at certain locations. The 

resources and time available for this project made it successful to create the proposed system 

however, with general errors such as performance and usability. The frameworks that were 

used in this project gave a variety of conclusion and results. There are two options to choose a 

framework based on; accuracy or FPS rate. For e.g. one may need higher accuracy for their 

detection system where Tensorflow would be suitable. On the other hand, YOLOv2 only 

provides great FPS rate and less accuracy compared to Tensorflow. On the assumption that, 

both accuracy and speed is required for a system, the ‘Future Work’ section below provides a 

solution to this problem. To conclude, the solution provided in this report solves the problem to 

some extent by creating a system and a ‘Ball Grasping Algorithm’ to grasp a ball effectively. 

However, the failures of this problem can be overcome by improving the resources available 

and by choosing the recommended options in the Future Work section. 

8.1 Future Work 

In this section, I discuss several possible future research directions. 

8.1.1 More effective detection model 

For this approach, I could train a neural network with the recently released YOLOv3 which is 

extremely fast and accurate compared to YOLOv2. Furthermore, it provides a unique way to 

adjust tradeoff between accuracy and speed by changing the size of the model without any 

retraining required. 

8.1.2 Using Kalman Filter for prediction of moving ball 

Kalman Filter is used to predict the trajectory of moving ball hence, this algorithm would 

enhance the system in this project. The scope of this problem can be adjusted to work for 

moving ball rather than stationary and while using a robotic arm that has a faster movement 

rate. 

8.1.3 Inverse and Forward Kinematics  

Inverse Kinematics requires the robot arm to use its gripper to a position in 3-D space. This 

would allow the arm to have a certain logic containing its movement limits where it would 

adjust itself based on the location of the ball. 
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Figure 34: Inverse Kinematics for the Robotic Arm [29]. 

 

Figure 35: Forward Kinematics calculations for the robotic arm [29]. 

Based on the above calculations, the arm would be able to adjust its movement where the ball is 

hard to reach. Currently, the ball can only be placed at certain distance to the robot which 

cannot use other joints except for base rotation movement. This causes issues when the ball is 

not in the desired position. Therefore, this approach would help it to rotate any of its joints to by 

knowing the current position of each joint to stay within limit and grasp the ball successfully.
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9 Personal Reflection 

9.1 Reflection on Project 

After viewing back on the project, I would have implemented the system with a faster robotic 

arm that is capable of outputting sensory data to track the movement of the arm. Furthermore, I 

would use a GPU for testing and the YOLOv3 method for even faster detection and higher 

accuracy. 

9.2 Personal Reflection 

If I had my time again, I would have fixated on a training dataset and gathering more data for 

the category, hence, not spending long time to gather the dataset, allowing me to spend more 

time on the implementation. This would also allow for a higher accuracy in training. Then, I 

would test the system against human participants with the ‘Black-box’ testing method to gather 

better evaluation results for analysis. 
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Appendices 

 

Figure 36: The DetectNet structure for training. 

Figure 37: The DetectNet structure for validation. 
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Figure 38: Loss of No. of Positives graph of the trained model on Tensorflow. 

Figure 39: Loss of No. of Negatives graph of the trained model on Tensorflow.  
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Figure 40: Sample test images where ping-pong balls were detected using Tensorflow. 
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Figure 41: The full code for object detection in web-cam through Tensorflow. 

Figure 42: Original, Mask and Threshold interfaces for attempt of white-ball tracking. 
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Figure 43: Snippet of code for movement of robot arm. 

Figure 44: Snippet of code for ball tracking in OpenCV. 


